Chapitre 9 - Équations du second degré

L'objectif de ce chapitre est de résoudre <u>certaines</u> équations à une inconnue du second degré.

1- Équations « produit nul »

a) Vocabulaire

Soit deux expressions A(x) et B(x) de la variable x.

Toute équation de la forme $A(x) \times B(x) = 0$ est appelée équation « produit nul ».

b) Propriété

Pour qu'un produit soit nul, il faut et il suffit qu'un de ses facteurs soit nul.

Autrement dit

Soit a et b deux nombres.

- * Si a = 0 ou b = 0, alors $a \times b = 0$.
- * Réciproquement, si $a \times b = 0$ alors a = 0 ou b = 0.

Démonstration

- * La première partie de la propriété est évidente.
- * Si $a \times b = 0$, on envisage deux cas.

Premier cas : supposons que a est nul. La propriété est alors démontrée.

Second cas : supposons que a est non nul. On peut alors multiplier chacun des membres de l'égalité par

l'inverse de a: $\frac{a \times b}{a} = \frac{0}{a}$. En simplifiant, on obtient : b = 0. **CQFD!**

c) Principe et méthode générale

On considère une équation du second degré.

- * Si ce n'est pas le cas, on transpose pour que le second membre de cette équation soit nul.
- * On factorise alors, si possible, le premier membre : on obtient ainsi une équation « produit nul ».
- * On utilise la précédente propriété : on doit alors résoudre deux équations du premier degré.

d) Application

Résoudre l'équation : (3x-2)(2x+3)=0. On reconnaît ici une équation « produit nul ».

Or, si un produit est nul, alors un au moins de ses facteurs est nul (et réciproquement).

Donc: 3x - 2 = 0 ou 2x + 3 = 0

Soit: $x = \frac{2}{3}$ ou $x = -\frac{3}{2}$

Par conséquent, l'équation admet deux solutions : $-\frac{3}{2}$ et $\frac{2}{3}$.

2- Égalité de deux carrés

a) Propriété

Soit un nombre *a*.

L'équation $x^2 = a^2$ admet deux solutions : a et -a .

Démonstration

$$x^2 = a^2$$
 donc $x^2 - a^2 = 0$.

On reconnaît une identité remarquable et on peut donc factoriser le premier membre : (x - a)(x + a) = 0On reconnaît alors une équation « produit nul ».

Or, si un produit est nul, alors un au moins de ses facteurs est nul (et réciproquement).

Donc:
$$x - a = 0$$
 ou $x + a = 0$

Soit:
$$x = a$$
 ou $x = -a$ CQFD!

b) Application

Résoudre l'équation : $(3x + 1)^2 = 16$

On a ici :
$$(3x + 1)^2 = 4^2$$

On en déduit que :
$$3x + 1 = 4$$
 ou $3x + 1 = -4$

$$3x = 3$$
 ou $3x = -5$

$$x = 1$$
 ou $x = -\frac{5}{3}$

Donc l'équation admet deux solutions : $-\frac{5}{3}$ et 1.